U23 2008-2/Gruppe1
Contents
Meta Data
Mitglieder
- Mark
- Christoph
- Hendrik
- Robert
Code
1. Abend
LED - Blinken
- Aufgabe: Eine LED soll zum blinken gebracht werden.
- Code:
<source lang ="c"> //**************************************************************************** // * // * Von Gruppe 1 // * Aufgabe: Alle LEDs sollen zum blinken gebracht werden. // * // * Task: All LED shall blink. // * //****************************************************************************
- include <avr/io.h>
- include <util/delay.h>
int main(void) { /* LED Anschluss */ /* LED output */ /* LED1 PC4 */ /* LED2 PD3 */ /* LED3 PD6 */ /* LED4 PD7 */
/* Setze Ports PC4, PD3, PD6 und PD7 als Ausgang */
/* Set ports PC4, PD3, PD6 and PD7 as outputs */
DDRC = _BV(4);
DDRD = _BV(7)|_BV(6)|_BV(3);
while(1) {
/* _delay_ms() verzögert um 10 Millisekunden */ /* 50 * 10ms = 500ms */ /* _delay_ms() delays for 10 Milliseconds */ /* 50 * 10ms = 500ms */ for (uint8_t i=0;i<50;i++) _delay_ms(10);
/* Schalte zwischen 5V und 0V an den Ausgängen hin und her */ /* Toggle 5V and 0V at the outputs */ PORTC ^= _BV(4); PORTD ^= _BV(7)|_BV(6)|_BV(3);
} return 0; }
</source>
LED - Einschalten
- Aufgabe: Eine LED soll zum leuchten gebracht werden.
- Code:
<source lang ="c"> //**************************************************************************** // * // * Von Gruppe 1 // * Aufgabe: Eine LED soll zum leuchten gebracht werden. // * //****************************************************************************
- include <avr/io.h>
int main(void) {
/* PC4 auf Ausgang */ DDRC = &b10000; /* Alternativ Hex: 0xF oder Dezimal: 16 */ /* 7 6 5 4 3 2 1 0 */ /* 0 0 0 1 0 0 0 0 */
/* PC4 einschalten */ PORTD = &b10000;
/* Endlosschleife */ while(1) { }
}
</source>
LED - Lauflicht
- Code:
<source lang ="c"> //**************************************************************************** // * // * Von Gruppe 1 // * //****************************************************************************
- include <avr/io.h>
- include <util/delay.h>
int main(void) { unsigned int i;
/* Setze Ports PC4, PD3, PD6 und PD7 als Ausgang */ DDRC = (1<<DDC4); DDRD = (1<<DDD7)|(1<<DDD6)|(1<<DDD3); /* Setze Ports PC4, PD3, PD6 und PD7 auf low */ PORTC = (0<<PC4); PORTD = (0<<PD7)|(0<<PD6)|(0<<PD3);
while(1) {
PORTC ^= _BV(PC4); for (i=0;i<50;i++) _delay_loop_2(0); PORTC ^= _BV(PC4); PORTD ^= _BV(PD3); for (i=0;i<50;i++) _delay_loop_2(0); PORTD ^= _BV(PD3); PORTD ^= _BV(PD6); for (i=0;i<50;i++) _delay_loop_2(0); PORTD ^= _BV(PD6); PORTD ^= _BV(PD7); for (i=0;i<50;i++) _delay_loop_2(0); PORTD ^= _BV(PD7);
} return 0; } </source>
Blinksequenz aufzeichnen und später abspielen
<source lang="c">#include <avr/io.h>
- include <util/delay.h>
- define SEQS 100
typedef struct { uint8_t bstate; uint32_t dur; } seq_t;
seq_t seq[SEQS]; uint8_t count = 0;
void wait(uint32_t ms); void record(void); void play(void);
void wait(uint32_t ms) {
uint32_t i;
for (i = 0; i < ms; i++) { _delay_ms(1); } }
void record(void) {
uint32_t dur = 0; uint8_t bstate_prev = 0x00; // prev button state uint8_t bstate = 0x00; // current button state
while (1) { bstate = 0x00;
// S1 if (~PINC & _BV(PC0)) { bstate |= 1 << 1; }
// S2 if (~PINC & _BV(PC1)) { bstate |= 1 << 2; }
// S3 if (~PINC & _BV(PC2)) { bstate |= 1 << 3; }
// S4 if (~PINC & _BV(PC3)) { bstate |= 1 << 4; }
// omit first state if (count == 0 && bstate == 0x0) { continue; }
if (count >= SEQS) { // overflow error => all LEDs on while (1) { PORTC |= _BV(PC4); PORTD |= _BV(PD3) | _BV(PD6) | _BV(PD7); } }
if (bstate_prev == bstate) { if (dur + 50 > dur) { dur += 50; }
if (bstate == 0x0 && count > 0 && dur >= 2000) { // no button was pressed for 2s return; } } else { // save state seq[count].bstate = bstate_prev; seq[count].dur = dur; count++;
// prepare for next state dur = 0; bstate_prev = bstate; }
wait(50); } }
void play(void) { uint8_t i;
while (1) { // PORTD |= _BV(PD7);
for (i = 0; i < count; i++) { // LED1 if (seq[i].bstate & 1 << 1) { PORTC |= _BV(PC4); } else { PORTC &= ~_BV(PC4); }
// LED2 if (seq[i].bstate & 1 << 2) { PORTD |= _BV(PD3); } else { PORTD &= ~_BV(PD3); }
// LED3 if (seq[i].bstate & 1 << 3) { PORTD |= _BV(PD6); } else { PORTD &= ~_BV(PD6); }
// LED4 if (seq[i].bstate & 1 << 4) { PORTD |= _BV(PD7); } else { PORTD &= ~_BV(PD7); }
wait(seq[i].dur); }
PORTC &= ~_BV(PC4); PORTD &= ~_BV(PD3) & ~_BV(PD6) & ~_BV(PD7); wait(300);
} }
int main(void) {
DDRC |= _BV(PC4);
DDRD |= _BV(PD3) | _BV(PD6) | _BV(PD7); // all LEDs are output
DDRC &= ~_BV(PC0) & ~_BV(PC1) & ~_BV(PC2) & ~_BV(PC3); // S[1..4] are input PORTC |= _BV(PC0) | _BV(PC1) | _BV(PC2) | _BV(PC3); // use pullup for S[1..4]
// wait for pullops to "settle down" wait(1000);
while (1) { record(); play(); } }</source>
2. Abend
Änderungen des IR-Signals werden aufgezeichnet, und auch zeitlich ausgewertet. Messung ist jedoch relativ ungenau. Implementation von Timer / Counter fehlt.
<source lang ="c"> /* ################################### */ /* # IR-Empfang # */ /* # Von Gruppe 1 # */ /* ################################### */ /* # Done: IR-Signale chronologisch # */ /* # aufzeichnen # */ /* ################################### */ /* # Todo: Counter / Timer einbauen # */ /* ################################### */
- include <avr/io.h>
- include <string.h>
- include <stdio.h>
- include <avr/pgmspace.h>
- include <util/delay.h>
- include "uart.h"
int main(void) { int status = 0; int counter = 0;
/* initialize serial uart */ uart_init();
/* configure irrx as input */ DDRC &= ~_BV(PC3);
/* init led pin as output */ DDRD |= _BV(PD3);
while(1) { counter++; for (int i = 0; i<10; i++) { _delay_us(10);
}
/* if ir rx is high, turn off led */ if (PINC & _BV(PC3)) { // Kein IR PORTD &= ~_BV(PD3); if (status == 1) { uart_printf("Ir jetzt aus %u\n",counter); counter = 0; } status = 0; } else { PORTD |= _BV(PD3); if (status == 0) { uart_printf("Ir jetzt an %u\n",counter); counter = 0; } status = 1; } }
} </source>
3. Abend
IR-Jammer
Sendet, sobald er IR empfängt, für 1000ms und wartet dann 5ms, damit er das ausgesandte Signal nicht wieder empfängt.
<source lang="c">
- include <avr/io.h>
- include <avr/interrupt.h>
- include <util/delay.h>
- include "uart.h"
/* constants */
- define MAX 160
/* 38khz: freq = F_CPU/(2*prescaler*frequency)
* 20mhz/(2*8*38khz) = ~33 * real frequency: 20mhz/(2*8*33) = ~37878Hz */
- define PWM_FREQ 33
/* global variables */
/* allocate 160*2 = 320 byte memory for storing a code,
* this means we can store 80 on/off sequence timings */
volatile uint16_t code[MAX]; /* current index in code[] (default: 0) */ volatile uint8_t pos = 0; /* current pin state (default: high == idle) */ volatile uint8_t state = 1; /* signal for the main application that a code has been received
* (default: 0) */
volatile uint8_t done = 0; /* signal button presses from interrupt to main */ volatile uint8_t button_press; /* current system mode */ enum {
MODE_OFF = 0, MODE_DISPLAY = 1, MODE_JAM = 2, MODE_RECORD = 3,
} mode = MODE_DISPLAY; /* current viewmode */ enum {
VIEW_VALUE_AND_TIME = 0, VIEW_VALUE = 1, VIEW_TIME = 2,
} view = VIEW_VALUE_AND_TIME;
/* call every 10 ms, for buttons at pins PC0-PC3 */ static uint8_t button_sample(void) {
/* initialize state, buttons are active low! */ static uint8_t btn_state = 15; //0b1111; /* initialize old sample */ static uint8_t last_sample = 15; //0b1111; /* read inputs */ uint8_t new_sample = PINC & 15; //0b1111;
/* mark bits which are sampled with the same value */ uint8_t same_sample = (last_sample ^ ~new_sample); /* all bits set in same_sample now have been sampled with the same value * at least two times, which means the button has settled */
/* compare the current button state with the most recent sampled value, * but only for those bits which have stayed the same */ uint8_t state_different = btn_state ^ (new_sample & same_sample); /* all bits set in state_different have been sampled at least two times * with the same value, and this value is different from the current * button state */
/* if a bit is set in state (means: button is not pressed) AND bit is set * in state_different (means: input has settled and value is different * from state) together means: button has been pressed recently */ uint8_t btn_press = btn_state & state_different;
/* toggle all bits for inputs which switched state */ btn_state ^= state_different;
/* store current sample for next time */ last_sample = new_sample;
/* if bit is set in btn_press, a button has been pressed * (not released yet) */ return btn_press;
}
void wait(uint32_t s) { uint32_t i; for (i = 0; i < s; i++) { _delay_ms(1); } }
/* set up timer 0 to generate a carrier using pwm at freq on pin OC0B (PD5) */ static void ir_enable(uint8_t freq) {
/* timer 0: fast pwm mode, clear OC0B on match, prescaler 8 */ TCCR0A = _BV(WGM00) | _BV(COM0B1); TCCR0B = _BV(CS01) | _BV(WGM02);
/* set frequency */ OCR0A = freq;
/* set duty-cycle to 50% */ OCR0B = freq/2;
}
/* disable timer 0 and pwm generation */ static void ir_disable(void) {
TCCR0A = 0; TCCR0B = 0;
}
/* pin change interrupt 1 service function */
ISR(PCINT1_vect)
{
/* do nothing if we are just processing a code in the main loop, * or no more space is available for a timer value */ if (done || pos == MAX) return;
/* if this would be the first timing value ever recorded, and the * state before was high (=idle), do not record the timing value * and just reset the timer */ if (state && pos == 0) { TCNT1 = 0; /* else record the timing value */ } else { /* store current timer value in code[] * and reset the timer */ code[pos++] = TCNT1; TCNT1 = 0; }
/* toggle second led */ PORTD ^= _BV(PD3);
/* toggle state */ state = !state;
}
/* timer 1 compare A interrupt service function */ ISR(TIMER1_COMPA_vect) {
/* do nothing if we are just processing a code in the main loop */ if (done) return;
/* if some code has been received */ if (pos > 0) { /* if pos is odd, one last 'off'-timing is missing, fill with zero */ if (pos % 2 == 1) code[pos++] = 0;
/* signal main */ done = 1;
/* turn on third led */ PORTD |= _BV(PD6); }
}
/* timer 2 compare A interrupt service function */ ISR(TIMER2_COMPA_vect) {
/* sample buttons every 10ms */ button_press |= button_sample();
}
int main(void) {
/* initialize uart */ uart_init(); uart_printf("rumpus ir analyzer\n");
/* configure led pins as outputs and turn leds off */ DDRC |= _BV(PC4); DDRD |= _BV(PD3) | _BV(PD6) | _BV(PD7); PORTC &= ~_BV(PC4); PORTD &= ~(_BV(PD3) | _BV(PD6) | _BV(PD7));
/* configure ir input pin, with pullup */ DDRC &= ~_BV(PC3); PORTC |= _BV(PC3);
/* configure button input pins, with pullup */ DDRC &= ~(_BV(PC0) | _BV(PC1) | _BV(PC2) | _BV(PC3)); PORTC |= _BV(PC0) | _BV(PC1) | _BV(PC2) | _BV(PC3);
/* configure ir send pin as output, set low */ DDRD |= _BV(PD5); PORTD &= ~_BV(PD5);
/* wait until pin is high (no ir carrier is detected) */ while(!(PINC & _BV(PC3)));
/* enable pin change interrupt 1 for ir input pin (PC3/PCINT11) */ PCMSK1 |= _BV(PCINT11); PCICR |= _BV(PCIE1);
/* configure timer1 with prescaler 64 and CTC for measuring ir timings */ TCCR1B = _BV(CS11) | _BV(CS10) | _BV(WGM12); /* configure timer action after 200ms: 20mhz/64/5 */ OCR1A = F_CPU/5/64; /* enable OCR1A interrupt */ TIMSK1 = _BV(OCIE1A);
/* configure timer 2 with prescaler 1024 and CTC * for button sampling */ TCCR2A = _BV(WGM21); TCCR2B = _BV(CS22) | _BV(CS21) | _BV(CS20); /* configure compare event a to occur after 10ms and enable interrupt */ OCR2A = F_CPU/1024/100; TIMSK2 = _BV(OCIE2A);
/* signal user availability by turning on led 1 */ PORTC |= _BV(PC4);
/* enable interrupts */ sei();
/* signal the user that the analyzer part has started by turning led 1 on */ PORTC |= _BV(PC3);
while(1) { /* if a code has been received */ if (mode == MODE_DISPLAY && done) {
/* print code to serial uart */ uart_printf("complete code received, %u on-off-timings:\n", pos/2); for (uint8_t i = 0; i < pos; i += 2) {
if (view == VIEW_VALUE_AND_TIME) { uint32_t on, off;
/* compute timing in microseconds */ on = ((uint32_t)code[i]) * 64 / 20; off = ((uint32_t)code[i+1]) * 64 / 20;
uart_printf(" %5lu us (%5u) on, %5lu us (%5u) off\n", on, code[i], off, code[i+1]); } else if (view == VIEW_VALUE) { uart_printf(" %5u on, %5u off\n", code[i], code[i+1]); } else if (view == VIEW_TIME) { uint32_t on, off;
/* compute timing in microseconds */ on = ((uint32_t)code[i]) * 64 / 20; off = ((uint32_t)code[i+1]) * 64 / 20;
uart_printf(" %5lu us on, %5lu us off\n", on, off); } }
/* turn off second and third led */ PORTD &= ~(_BV(PD3) | _BV(PD6));
/* wait until pin is high (no ir carrier is detected) */ while(!(PINC & _BV(PC3)));
/* reset all global variables */ pos = 0; state = 1; done = 0; }
if (mode == MODE_JAM) { // hier wird gejammt!
if (!state) { DDRC |= _BV(PC3); // ir empfang aus
ir_enable(PWM_FREQ); wait(1000); ir_disable();
wait(5); // damit wir unser eben gesendetes signal nicht empfangen DDRC &= ~_BV(PC3); // ir empfang an
done = 0; pos = 0; } }
if (button_press) { /* first button toggles system mode */ if (button_press & 1) { mode++; if (mode > MODE_RECORD) mode = MODE_OFF;
if (mode == MODE_OFF) { uart_printf("ir analyzer switched off\n");
/* disable timer1 and pin change interrupts */ TIMSK1 &= ~_BV(OCIE1A); PCMSK1 &= ~_BV(PCINT11);
/* turn off led1 */ PORTC &= ~_BV(PC4);
} else if (mode == MODE_DISPLAY) { uart_printf("scan and display codes\n");
/* clear interrupt flags, enable timer1 and pin change interrupts */ TIFR1 = _BV(OCIE1A); TIMSK1 |= _BV(OCIE1A); PCMSK1 |= _BV(PCINT11);
/* turn on led1 */ PORTC |= _BV(PC4); } else if (mode == MODE_JAM) { /* clear interrupt flags, enable timer1 and pin change interrupts */ TIFR1 = _BV(OCIE1A); TIMSK1 |= _BV(OCIE1A); PCMSK1 |= _BV(PCINT11);
uart_printf("jamming mode active\n"); } else if (mode == MODE_RECORD) { uart_printf("record and replay a code\n"); } }
/* second button toggles view mode */ if (button_press & 2) { view++; if (view > VIEW_TIME) view = VIEW_VALUE_AND_TIME;
if (view == VIEW_VALUE_AND_TIME) uart_printf("display timer value and time (in us)\n"); else if (view == VIEW_VALUE) uart_printf("display timer value\n"); else if (view == VIEW_TIME) uart_printf("display time (in us)\n"); }
if (button_press & 4) { static uint8_t pwm = 0;
if (!pwm) { ir_enable(PWM_FREQ); uart_printf("pwm on\n"); } else { ir_disable(); uart_printf("pwm off\n"); } pwm = !pwm; }
button_press = 0; } }
}</source>