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Asymmetric Cryptography
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RSA
1977 by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT

c = me mod N

m = cd mod N

ϕ = (p − 1)(q − 1)
d = e−1 mod ϕ

N = pq
e < ϕ
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Shor’s Algorithm

I Combined classical/quantum probabilistic algorithm

I Essential step: find period of x 7→ ax mod N via
superposition, quantum Fourier transform and measurement

I Quantum computer breaks: RSA, DSA, (hyper-)elliptic
curve cryptography,. . .

I Need for “post-quantum” cryptography
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Complexity
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Post-Quantum!

PQ?

6 Sebastian Schmittner



Post-Quantum Cryptography1

Existing PQ-cryptography schemes:

I Secret-key (Symmetric encryption, AES, 1998)

I Hash-based (Signature, Hash trees, 1979)

I Code-based (McEliece, 1978)

I Lattice-based (NTRU, 1998)

I Multivariate-quadratic-equations (Signature, HFEv−, 1996)

Why RSA?

I Security level: attack needs 2b operations

I RSA: key length nRSA ∝ b3/(log b)2

I McEliece: key length nMcEliece ∝ b2/(log b)2

But: nMcEliece/nRSA(b = 128) ≈ 102 ∼ 103 due to pre-factors
1Bernstein, Buchmann, Dahmen: Post-quantum cryptography. Springer ’09.
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Lattice-based cryptography

I Choose a basis B = {b1, . . . , bn} of Rn

I The finite set L = SpannZq
(B) is called a (periodic) lattice
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I B ′ Basis ⇔ linear independent and SpannZq
(B ′)L

I ⇔ B ′ = UB for unimodular U ∈ Gln(Z).

I Lenstra–Lenstra–Lovász lattice (LLL) basis reduction
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Lattice problems
Given a basis B

b1
b2

Shortest Vector Prob. (SVP)

I Find shortest v ∈ L

I NP-hard for max-Norm

I Used to secure
NTRUEncrypt public key
cryptosystem

b1
b2

Closest Vector Problem (CVP)

I Find closest v ∈ L to
given ṽ ∈ Rn \ L

I Goldreich-Goldwasser-
Halevi (GGH)
cryptosystem
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Lattice problems
Given a basis B

b1
b2

Shortest Vector Prob. (SVP)

b1
b2

Closest Vector Problem (CVP)

I Decision Problems: GapSVPβ and GapCVPβ
I ||v − ṽ || < 1 or ||v − ṽ || > β ?

I Polynomialtime-equivalent and both in NP

I Easy for large β

I NP-hard for e.g. β ∈ o
(
n1/ log log n

)
, in particular for β ∈ O(1)
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Learning with errors (LWE)
Rough idea
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y = f (x)

I f : Zn
q → Zq linear, i.e. f (x) = v · x for some vector v

I Error: y = f (x) + η with random variable η (e.g. gaussian)

I Can we “learn” the function f from samples {(x , y)}?
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Learning with errors (LWE)
More precise idea

I Replace target space by T = R/Z ' U(1) ' S1

I Group homomorphism Zq → T, i.e. y 7→ y/q

I Distribution φ of random variable η on T
I Find v ∈ Zn

q from polynomially many (x , v · x/q + η)
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Learning with errors (LWE)
More precise idea

I Decision version: φ uniform or gaussian?

I Equivalent to search for not to large prime q

I No easy instances

I GapSVP can be reduced to LWE

I LWE translates into Regev’s public key cryptosystem
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Key exchange
General idea + example: Diffie-Hellman

I Public: Set of commuting functions {fa}, e.g. fa(x) = ea

mod N, and starting value x

I Private: every participant chooses random ai
I Exchange: everybody publishes fai (x)

I Computing a from x and fa(x) needs to be hard

I Compute and publish fai
(
faj (x)

)
I . . . (actually do this more cleverly with many participants ;)

I Finally everybody possesses a common key F (x) with
F = fa1 ◦ fa2 ◦ . . . = fa2 ◦ fa1 ◦ . . .

I E.g. (ea)b = eab =
(
eb
)a

(also true mod N)
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Ring learning with errors key exchange (RLWE-KEX)
Rough idea

I Public: polynomial a(x) =
∑n

i=1 aix
i

I Private: small (max norm of coefficients) polynomials s and e

I (Almost) commuting operations:

(asA + eA)sB + eB = asAsB + easB + eB (1)

≈ (asB + eB)sA + eA = asAsB + eBsA + eA (2)

I Treating eBsA + eA and eAsB + eB as errors

I Detailed description of the algorithm:
https://en.wikipedia.org/wiki/Ring_learning_with_

errors_key_exchange
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