Post-Quantum Cryptography

Sebastian Schmittner

Institute for Theoretical Physics
University of Cologne
2015-10-26 Talk @ U23 @ CCC Cologne

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Introduction
Review: Asymmetric Cryptography
Quantum Computer: Shor's Algorithm
Complexity

Post-Quantum Cryptography
Overview
Lattice-based cryptography
Learning with errors

Asymmetric Cryptography

Bob

RSA

1977 by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT

Shor's Algorithm

- Combined classical/quantum probabilistic algorithm
- Essential step: find period of $x \mapsto a^{x} \bmod N$ via superposition, quantum Fourier transform and measurement
- Quantum computer breaks: RSA, DSA, (hyper-)elliptic curve cryptography,...
- Need for "post-quantum" cryptography

Complexity

Complexity

Post-Quantum Cryptography ${ }^{1}$

Existing PQ-cryptography schemes:

- Secret-key (Symmetric encryption, AES, 1998)
- Hash-based (Signature, Hash trees, 1979)
- Code-based (McEliece, 1978)
- Lattice-based (NTRU, 1998)
- Multivariate-quadratic-equations (Signature, HFE ${ }^{v-}$, 1996)

Why RSA?

- Security level: attack needs 2^{b} operations
- RSA: key length $n_{R S A} \propto b^{3} /(\log b)^{2}$
- McEliece: key length $n_{\text {McEliece }} \propto b^{2} /(\log b)^{2}$

But: $n_{\text {McEliece }} / n_{R S A}(b=128) \approx 10^{2} \sim 10^{3}$ due to pre-factors
${ }^{1}$ Bernstein, Buchmann, Dahmen: Post-quantum cryptography. Springer '09.

Lattice-based cryptography

- Choose a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n}
- The finite set $L=\operatorname{Spann}_{\mathbb{Z}_{q}}(B)$ is called a (periodic) lattice

Lattice-based cryptography

- Choose a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n}
- The finite set $L=\operatorname{Spann}_{\mathbb{Z}_{q}}(B)$ is called a (periodic) lattice

- B^{\prime} Basis \Leftrightarrow linear independent and $\operatorname{Spann}_{\mathbb{Z}_{q}}\left(B^{\prime}\right) \stackrel{?}{=} L$

Lattice-based cryptography

- Choose a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n}
- The finite set $L=\operatorname{Spann}_{\mathbb{Z}_{q}}(B)$ is called a (periodic) lattice

- B^{\prime} Basis \Leftrightarrow linear independent and $\operatorname{Spann}_{\mathbb{Z}_{q}}\left(B^{\prime}\right) \neq L$

Lattice-based cryptography

- Choose a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of \mathbb{R}^{n}
- The finite set $L=\operatorname{Spann}_{\mathbb{Z}_{q}}(B)$ is called a (periodic) lattice

- B^{\prime} Basis \Leftrightarrow linear independent and $\operatorname{Spann}_{\mathbb{Z}_{q}}\left(B^{\prime}\right)=L$
- $\Leftrightarrow B^{\prime}=U B$ for unimodular $U \in \mathrm{GI}_{n}(\mathbb{Z})$.
- Lenstra-Lenstra-Lovász lattice (LLL) basis reduction

Lattice problems

Given a basis B

Shortest Vector Prob. (SVP)

- Find shortest $v \in L$
- NP-hard for max-Norm
- Used to secure NTRUEncrypt public key cryptosystem

Closest Vector Problem (CVP)

- Find closest $v \in L$ to given $\tilde{v} \in \mathbb{R}^{n} \backslash L$
- Goldreich-GoldwasserHalevi (GGH) cryptosystem

Lattice problems

Given a basis B

Shortest Vector Prob. (SVP)

Closest Vector Problem (CVP)

- Decision Problems: GapSVP β_{β} and GapCVP $_{\beta}$
- $\|v-\tilde{v}\|<1$ or $\|v-\tilde{v}\|>\beta$?
- Polynomialtime-equivalent and both in NP
- Easy for large β
- NP-hard for e.g. $\beta \in o\left(n^{1 / \log \log n}\right)$, in particular for $\beta \in O(1)$

Learning with errors (LWE)

Rough idea

- $f: \mathbb{Z}_{q}^{n} \rightarrow \mathbb{Z}_{q}$ linear, i.e. $f(x)=v \cdot x$ for some vector v
- Error: $y=f(x)+\eta$ with random variable η (e.g. gaussian)
- Can we "learn" the function f from samples $\{(x, y)\}$?

Learning with errors (LWE)

Rough idea

- $f: \mathbb{Z}_{q}^{n} \rightarrow \mathbb{Z}_{q}$ linear, i.e. $f(x)=v \cdot x$ for some vector v
- Error: $y=f(x)+\eta$ with random variable η (e.g. gaussian)
- Can we "learn" the function f from samples $\{(x, y)\}$?

Learning with errors (LWE)

More precise idea

- Replace target space by $\mathbb{T}=\mathbb{R} / \mathbb{Z} \simeq U(1) \simeq S^{1}$
- Group homomorphism $\mathbb{Z}_{q} \rightarrow \mathbb{T}$, i.e. $y \mapsto y / q$
- Distribution ϕ of random variable η on \mathbb{T}
- Find $v \in \mathbb{Z}_{q}^{n}$ from polynomially many $(x, v \cdot x / q+\eta)$

Learning with errors (LWE)

More precise idea

- Decision version: ϕ uniform or gaussian?
- Equivalent to search for not to large prime q
- No easy instances
- GapSVP can be reduced to LWE
- LWE translates into Regev's public key cryptosystem

Key exchange

General idea + example: Diffie-Hellman

- Public: Set of commuting functions $\left\{f_{a}\right\}$, e.g. $f_{a}(x)=e^{a}$ $\bmod N$, and starting value x
- Private: every participant chooses random a_{i}
- Exchange: everybody publishes $f_{a_{i}}(x)$
- Computing a from x and $f_{a}(x)$ needs to be hard
- Compute and publish $f_{a_{i}}\left(f_{a_{j}}(x)\right)$
- ... (actually do this more cleverly with many participants ;)
- Finally everybody possesses a common key $F(x)$ with $F=f_{a_{1}} \circ f_{a_{2}} \circ \ldots=f_{a_{2}} \circ f_{a_{1}} \circ \ldots$
- E.g. $\left(e^{a}\right)^{b}=e^{a b}=\left(e^{b}\right)^{a}$ (also true $\bmod N$)

Ring learning with errors key exchange (RLWE-KEX)

Rough idea

- Public: polynomial $a(x)=\sum_{i=1}^{n} a_{i} x^{i}$
- Private: small (max norm of coefficients) polynomials s and e
- (Almost) commuting operations:

$$
\begin{align*}
& \left(a s_{A}+e_{A}\right) s_{B}+e_{B}=a s_{A} s_{B}+e_{a} s_{B}+e_{B} \tag{1}\\
& \approx\left(a s_{B}+e_{B}\right) s_{A}+e_{A}=a s_{A} s_{B}+e_{B} s_{A}+e_{A} \tag{2}
\end{align*}
$$

- Treating $e_{B} s_{A}+e_{A}$ and $e_{A} s_{B}+e_{B}$ as errors
- Detailed description of the algorithm: https://en.wikipedia.org/wiki/Ring_learning_with_ errors_key_exchange

