Post-Quantum Cryptography

Sebastian Schmittner

Institute for Theoretical Physics University of Cologne

2015-10-26 Talk @ U23 @ CCC Cologne

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Introduction

Review: Asymmetric Cryptography Quantum Computer: Shor's Algorithm Complexity

Post-Quantum Cryptography

Overview Lattice-based cryptography Learning with errors

Asymmetric Cryptography

RSA

1977 by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT

Shor's Algorithm

- Combined classical/quantum probabilistic algorithm
- ► Essential step: find period of x → a^x mod N via superposition, quantum Fourier transform and measurement
- Quantum computer breaks: RSA, DSA, (hyper-)elliptic curve cryptography,...
- Need for "post-quantum" cryptography

Complexity

Post-Quantum Cryptography¹

Existing PQ-cryptography schemes:

- ► Secret-key (Symmetric encryption, AES, 1998)
- ► Hash-based (Signature, Hash trees, 1979)
- Code-based (McEliece, 1978)
- ► Lattice-based (NTRU, 1998)
- ► Multivariate-quadratic-equations (Signature, HFE^{*v*-}, 1996)

Why RSA?

- ► Security level: attack needs 2^b operations
- RSA: key length $n_{RSA} \propto b^3/(\log b)^2$
- McEliece: key length $n_{McEliece} \propto b^2/(\log b)^2$

But: $n_{McEliece}/n_{RSA}(b=128) pprox 10^2 \sim 10^3$ due to pre-factors

¹Bernstein, Buchmann, Dahmen: Post-quantum cryptography. Springer '09.

- Choose a basis $B = \{b_1, \ldots, b_n\}$ of \mathbb{R}^n
- The finite set $L = \text{Spann}_{\mathbb{Z}_q}(B)$ is called a (periodic) lattice

- Choose a basis $B = \{b_1, \ldots, b_n\}$ of \mathbb{R}^n
- The finite set $L = \text{Spann}_{\mathbb{Z}_a}(B)$ is called a (periodic) lattice

► B' Basis \Leftrightarrow linear independent and Spann_{Z_a}(B') $\stackrel{?}{=} L$

- Choose a basis $B = \{b_1, \ldots, b_n\}$ of \mathbb{R}^n
- The finite set $L = \text{Spann}_{\mathbb{Z}_q}(B)$ is called a (periodic) lattice

• B' Basis \Leftrightarrow linear independent and Spann_{\mathbb{Z}_{q}} $(B')\neq L$

- Choose a basis $B = \{b_1, \ldots, b_n\}$ of \mathbb{R}^n
- The finite set $L = \text{Spann}_{\mathbb{Z}_q}(B)$ is called a (periodic) lattice

- B' Basis \Leftrightarrow linear independent and Spann_{\mathbb{Z}_a}(B') = L
- $\Leftrightarrow B' = UB$ for unimodular $U \in Gl_n(\mathbb{Z})$.
- ► Lenstra-Lenstra-Lovász lattice (LLL) basis reduction

Lattice problems

Given a basis B

Shortest Vector Prob. (SVP)

- Find shortest $v \in L$
- NP-hard for max-Norm
- Used to secure NTRUEncrypt public key cryptosystem

Closest Vector Problem (CVP)

- Find closest $\mathbf{v} \in L$ to given $\tilde{\mathbf{v}} \in \mathbb{R}^n \setminus L$
- Goldreich-Goldwasser-Halevi (GGH) cryptosystem

Lattice problems

Given a basis B

Shortest Vector Prob. (SVP)

Closest Vector Problem (CVP)

- Decision Problems: $GapSVP_{\beta}$ and $GapCVP_{\beta}$
 - $||v \tilde{v}|| < 1$ or $||v \tilde{v}|| > \beta$?
- ► Polynomialtime-equivalent and both in NP
- Easy for large β
- ▶ *NP*-hard for e.g. $\beta \in o(n^{1/\log \log n})$, in particular for $\beta \in O(1)$

Rough idea

- $f: \mathbb{Z}_q^n \to \mathbb{Z}_q$ linear, i.e. $f(x) = v \cdot x$ for some vector v
- Error: $y = f(x) + \eta$ with random variable η (e.g. gaussian)
- Can we "learn" the function f from samples $\{(x, y)\}$?

Rough idea

- $f: \mathbb{Z}_q^n \to \mathbb{Z}_q$ linear, i.e. $f(x) = v \cdot x$ for some vector v
- Error: $y = f(x) + \eta$ with random variable η (e.g. gaussian)
- Can we "learn" the function f from samples $\{(x, y)\}$?

More precise idea

- ▶ Replace target space by $\mathbb{T} = \mathbb{R}/\mathbb{Z} \simeq U(1) \simeq S^1$
 - Group homomorphism $\mathbb{Z}_q o \mathbb{T}$, i.e. $y \mapsto y/q$
- Distribution ϕ of random variable η on $\mathbb T$
- Find $v \in \mathbb{Z}_q^n$ from polynomially many $(x, v \cdot x/q + \eta)$

- Decision version: ϕ uniform or gaussian?
- Equivalent to search for not to large prime q
- No easy instances
- ► GapSVP can be reduced to LWE
- ► LWE translates into Regev's public key cryptosystem

Key exchange

General idea + example: Diffie-Hellman

- ▶ Public: Set of commuting functions {f_a}, e.g. f_a(x) = e^a mod N, and starting value x
- Private: every participant chooses random a_i
- Exchange: everybody publishes $f_{a_i}(x)$
 - Computing a from x and $f_a(x)$ needs to be hard
- Compute and publish $f_{a_i}(f_{a_j}(x))$
- ▶ ... (actually do this more cleverly with many participants ;)
- ▶ Finally everybody possesses a common key F(x) with F = f_{a1} ∘ f_{a2} ∘ ... = f_{a2} ∘ f_{a1} ∘ ...
 ▶ E.g. (e^a)^b = e^{ab} = (e^b)^a (also true mod N)

Ring learning with errors key exchange (RLWE-KEX) Rough idea

- Public: polynomial $a(x) = \sum_{i=1}^{n} a_i x^i$
- ▶ Private: *small* (max norm of coefficients) polynomials *s* and *e*
- (Almost) commuting operations:

$$(as_A + e_A)s_B + e_B = as_As_B + e_as_B + e_B \tag{1}$$

$$\approx (as_B + e_B)s_A + e_A = as_As_B + e_Bs_A + e_A \qquad (2)$$

- Treating $e_B s_A + e_A$ and $e_A s_B + e_B$ as errors
- Detailed description of the algorithm: https://en.wikipedia.org/wiki/Ring_learning_with_ errors_key_exchange

