
U23 2016 - Reverse Engineering

Andy

andy@koeln.ccc.de

November 15, 2016

Introduction
Static program analysis
Dynamic program analysis

Tools
strings
objdump
IDA
Hopper
gdb

Live Reversing

Exercises

Section 1

Introduction

Introduction

I Reverse Engineering is the process of analyzing a design to
figure out exactly how it works and re-produce the analyzed
design as a 1:1 copy - not only a functional copy which
behaves like the original but is designed exactly like the
original

I Not only applicable to software. Also all kinds of hardware:
Chips, PCBs, Trains, Planes, Cars etc. Also maybe only parts
of a whole system like the engine, suspension, certain control
mechanisms etc.

I We are only interested in software here

Introduction

I Reverse Engineering is the process of analyzing a design to
figure out exactly how it works and re-produce the analyzed
design as a 1:1 copy - not only a functional copy which
behaves like the original but is designed exactly like the
original

I Not only applicable to software. Also all kinds of hardware:
Chips, PCBs, Trains, Planes, Cars etc. Also maybe only parts
of a whole system like the engine, suspension, certain control
mechanisms etc.

I We are only interested in software here

When do we reverse engineer software?

I Malware analysis

I Lost source code of an original product

I Compatibility of file formats / network protocols

I Security analysis

I Debugging

I Curiosity (not 100% legal, but most of the time this can be
twisted to be about security or compatibility - situation
between EU and US is different!)

Static program analysis

I Look at the code, but don’t execute it

I This is what you do when you disassemble a program and
stare at the code

I Also possible on source code, but not important here

Dynamic program analysis

I Execute the code you want to analyze

I Instrument it while it’s being executed

I Figure out what’s going on either automatically using a tool
or by hand

I This is what you do if you debug a program using gdb/MSVC
or run it in an emulator with augmentation capabilities
(Unicorn, PIN etc.)

Section 2

Tools

strings

I Easiest tool ever

I Just dumps all printable character sequences longer than n
characters (default is 4)

Example:

$ strings test

/lib64/ld-linux -x86 -64.so.2

libc.so.6

puts

__libc_start_main

__gmon_start__

GLIBC_2 .2.5

UH -0

AWAVA

AUATL

[]A\A]A^A_

Hello , World!

;*3$"

GCC: (GNU) 6.1.1 20160802

[...]

objdump
I Very simple disassembler
I Installed everywhere because it’s part of binutils
I -d disassembles a binary

Example:
$ objdump -d test

[...]

0804840b <main >:

804840b: 8d 4c 24 04 lea 0x4(%esp),%ecx

804840f: 83 e4 f0 and $0xfffffff0 ,%esp

8048412: ff 71 fc pushl -0x4(%ecx)

8048415: 55 push %ebp

8048416: 89 e5 mov %esp ,%ebp

8048418: 51 push %ecx

8048419: 83 ec 04 sub $0x4 ,%esp

804841c: 83 ec 0c sub $0xc ,%esp

804841f: 68 c0 84 04 08 push $0x80484c0

8048424: e8 b7 fe ff ff call 80482e0 <puts@plt >

8048429: 83 c4 10 add $0x10 ,%esp

804842c: b8 00 00 00 00 mov $0x0 ,%eax

8048431: 8b 4d fc mov -0x4(%ebp),%ecx

8048434: c9 leave

8048435: 8d 61 fc lea -0x4(%ecx),%esp

8048438: c3 ret

8048439: 66 90 xchg %ax ,%ax

804843b: 66 90 xchg %ax ,%ax

804843d: 66 90 xchg %ax ,%ax

804843f: 90 nop

[...]

IDA

I The mother of disassemblers

I Very powerful tool

I Quite costly

I Free version is available for Windows but quite outdated.
Rumors tell there will be an update sometime soon

I Runs in wine on Mac OS and Linux

I Not really much to know about, I’ll show the basic features
later

I If you have the money, it even has a decompiler for certain
architectures

I Point to take away: It’s the tool to do reversing

I https://www.hex-rays.com/products/ida/index.shtml

Figure: IDA

Hopper

I A bit like IDA

I Demo version available

I Not quite that expensive

I Also not that powerful

I https://www.hopperapp.com/

Figure: Hopper

gdb

I Standard Debugger for unix environments

I Has a textinterface

I Different addons available like peda
(https://github.com/longld/peda) specifically for
exploitation/reversing

gdb Cheat Sheet 1

I Start gdb: gdb ./myfile

I Running the binary: run

I Setting breakpoints on symbols: break main

I Setting breakpoints on addresses: break *0x4004fa

I Listing breakpoints: info breakpoints

I Delete breakpoints: del <n> (n = number from info

breakpoints)

I Show registers: info registers

I Disassemble things: disassemble main

I Disassemble things without symbols: disassemble

0x4004fa,+0x20 (disassemble 0x20 bytes starting from
0x4004fa)

gdb Cheat Sheet 2

I Show backtrace: backtrace

I Single step instruction: si

I Single step instruction while not entering subroutines: ni

I Forward to end of function: finish

I Continue until next breakpoint: continue

I Examine memory: x - Example: x/32wx $esp - ”Look into a
pointer at esp and dump 32 words in hexadecimal
representation”

I Print strings: print - Example: print (char*)0x80484c0 -
”Take address 0x80484c0, cast it into a char pointer and
print the string it points to”

I Help: help <command>

gdb peda

I peda is a nice addon for GDB

I Get it from https://github.com/longld/peda

I See Readme.md on how to install it

Section 3

Live Reversing

Section 4

Exercises

Exercises

1. Solve the three exercises in /u23/reversing

2. Find out what they do

3. Reverse engineer

4. ???

5. Profit!

Hint: If you encounter unknown C-functions, check the man-pages!
Example: man 3 strlen

Copying files to/from the remote machine:
scp -P 8523 user@u23.labor.koeln.ccc.de:/u23/reversing/*.elf

/local/directory

Windows users: Use WinSCP

	Introduction
	Static program analysis
	Dynamic program analysis

	Tools
	strings
	objdump
	IDA
	Hopper
	gdb

	Live Reversing
	Exercises

