U23 2016 - Reverse Engineering

Andy
andy@koeln.ccc.de

November 15, 2016

Introduction
Static program analysis
Dynamic program analysis

Tools
strings
objdump
IDA
Hopper
gdb

Live Reversing

Exercises

Introduction

> Reverse Engineering is the process of analyzing a design to
figure out exactly how it works and re-produce the analyzed
design as a 1:1 copy - not only a functional copy which
behaves like the original but is designed exactly like the
original

» Not only applicable to software. Also all kinds of hardware:
Chips, PCBs, Trains, Planes, Cars etc. Also maybe only parts
of a whole system like the engine, suspension, certain control
mechanisms etc.

Introduction

> Reverse Engineering is the process of analyzing a design to
figure out exactly how it works and re-produce the analyzed
design as a 1:1 copy - not only a functional copy which
behaves like the original but is designed exactly like the
original

» Not only applicable to software. Also all kinds of hardware:
Chips, PCBs, Trains, Planes, Cars etc. Also maybe only parts
of a whole system like the engine, suspension, certain control
mechanisms etc.

» We are only interested in software here

When do we reverse engineer software?

» Malware analysis

» Lost source code of an original product

» Compatibility of file formats / network protocols
» Security analysis

» Debugging

» Curiosity (not 100% legal, but most of the time this can be
twisted to be about security or compatibility - situation
between EU and US is different!)

Static program analysis

> Look at the code, but don't execute it

» This is what you do when you disassemble a program and
stare at the code

» Also possible on source code, but not important here

Dynamic program analysis

Execute the code you want to analyze

\{

Instrument it while it's being executed

\{

» Figure out what's going on either automatically using a tool
or by hand

This is what you do if you debug a program using gdb/MSVC
or run it in an emulator with augmentation capabilities
(Unicorn, PIN etc.)

\{

strings

» Easiest tool ever

> Just dumps all printable character sequences longer than n
characters (default is 4)

Example:

$ strings test
/1ib64/1d-1linux-x86-64.50.2
libc.so.6

puts

__libc_start_main
__gmon_start__
GLIBC_2.2.5

UH-0

AWAVA

AUATL

[JANATA"A_

Hello, World!

;%38
GCC:,(GNU),6.1.1,,20160802
[...1

objdump

» Very simple disassembler

> Installed everywhere because it’s part of binutils

» -d disassembles a binary

Example:

$ objdump -d test

[...]

[...1

0804840b <main>:
804840b:
804840f :
8048412:
8048415:
8048416:
8048418:
8048419:
804841c:
804841f:
8048424:
8048429:
804842c:
8048431:
8048434:
8048435:
8048438:
8048439:
804843b:
804843d:
804843f:

4c

71

eb

ec
ec

b7
cd

4d

61

90

90

24

fc

04

o213
ff

00

08
ff

00

0x4 (%esp) ,hecx
$OxffffFff£f0 ,%esp
-0x4 (%ecx)

%ebp

%esp ,%ebp

%hecx

$0x4 ,%esp

$0xc ,%esp
$0x80484c0
80482e0 <puts@plt>
$0x10 ,%esp

$0x0 ,%eax

-0x4 (%ebp) ,%ecx

-0x4 (%ecx) ,hesp
%ax ,%ax

%ax ,%hax
%ax ,%hax

IDA

The mother of disassemblers
Very powerful tool
Quite costly

Free version is available for Windows but quite outdated.
Rumors tell there will be an update sometime soon

Runs in wine on Mac OS and Linux

Not really much to know about, I'll show the basic features
later

If you have the money, it even has a decompiler for certain
architectures

Point to take away: It's the tool to do reversing

https://www.hex-rays.com/products/ida/index.shtml

]
-

——
Reaulr fncton Unewlored 1% Tnsouction — Bxternal sy

Sex T Davewd | Hexview suuctre

SRR

SEERSRRSSNSE

(ne ar 15
 caph ovrvew

Figure: IDA

Hopper

A bit like IDA

» Demo version available

\{

\{

Not quite that expensive

v

Also not that powerful

v

https://www.hopperapp.com/

[TTTN T ENVE | =n

Figure: Hopper

gdb

» Standard Debugger for unix environments
> Has a textinterface

» Different addons available like peda

(https://github.com/longld /peda) specifically for
exploitation /reversing

gdb Cheat Sheet 1

» Start gdb: gdb ./myfile

» Running the binary: run

» Setting breakpoints on symbols: break main

» Setting breakpoints on addresses: break *0x4004fa
> Listing breakpoints: info breakpoints

» Delete breakpoints: del <n> (n = number from info
breakpoints)

» Show registers: info registers
» Disassemble things: disassemble main

» Disassemble things without symbols: disassemble
0x4004fa,+0x20 (disassemble 0x20 bytes starting from
0x4004fa)

gdb Cheat Sheet 2

v

Show backtrace: backtrace

Single step instruction: si

Single step instruction while not entering subroutines: ni
Forward to end of function: finish

Continue until next breakpoint: continue

Examine memory: x - Example: x/32wx $esp - "Look into a
pointer at esp and dump 32 words in hexadecimal
representation”

Print strings: print - Example: print (char*)0x80484cO -
"Take address 0x80484c0, cast it into a char pointer and
print the string it points to"

Help: help <command>

gdb peda

» peda is a nice addon for GDB
» Get it from https://github.com/longld/peda
» See Readme.md on how to install it

Exercises

Solve the three exercises in /u23/reversing
Find out what they do

Reverse engineer
227

Profit!

G 5= 09 e

Hint: If you encounter unknown C-functions, check the man-pages!
Example: man 3 strlen

Copying files to/from the remote machine:
scp -P 8523 user@u23.labor.koeln.ccc.de:/u23/reversing/*.elf
/local/directory

Windows users: Use WinSCP

	Introduction
	Static program analysis
	Dynamic program analysis

	Tools
	strings
	objdump
	IDA
	Hopper
	gdb

	Live Reversing
	Exercises

